miércoles, 19 de noviembre de 2014

presentación de números enteros

UNIDAD 1 LOS NUMEROS ENTEROS

 LEY DE SIGNO PARA SUMA Y RESTA CON NUMEROS ENTEROS


Para sumar dos números enteros, se determina el signo y el valor absoluto del resultado del siguiente modo:
·         Si ambos sumandos tienen el mismo signo: ese es también el signo del resultado, y su valor absoluto es la suma de los valores absolutos de los sumandos.
·         Si ambos sumandos tienen distinto signo:
-    El signo del resultado es el signo del sumando con mayor valor absoluto.
 --  El valor absoluto del resultado es la diferencia entre el mayor valor absoluto y el menor valor absoluto, de entre los dos sumandos.

La suma de números enteros cumple las siguientes propiedades:

·         Propiedad asociativa. Dados tres números enteros a, b y c, las sumas (a + b) + c y a + (b + c) son iguales.
·         Propiedad conmutativa. Dados dos números enteros a y b, las sumas a + b y b + a son iguales.
·         Elemento neutro. Todos los números enteros a quedan inalterados al sumarles 0: a + 0 = a.
Ejemplo.
  1. Propiedad asociativa:
[ (−13) + (+25) ] + (+32) = (+12) + (+32) = (+44)
(−13) + [ (+25) + (+32) ] = (−13) + (+57) = (+44)
  1. Propiedad conmutativa:
(+9) + (−17) = −8
(−17) + (+9) = −8

La resta de números enteros es muy sencilla, ya que ahora es un caso particular de la suma.

La resta de dos números enteros (minuendo menos sustraendo) se realiza sumando el minuendo más el sustraendo cambiado de signo.
Ejemplos
(+10) − (−5) = (+10) + (+5) = +15
(−7) − (+6) = (−7) + (−6) = −13
(−4) − (−8) = (−4) + (+8) = +4
(+2) − (+9) = (+2) + (−9) = −7

Multiplicación

La multiplicación de números enteros, al igual que la suma, requiere determinar por separado el signo y valor absoluto del resultado.
En la multiplicación (o división) de dos números enteros se determinan el valor absoluto y el signo del resultado de la siguiente manera:
  • El valor absoluto es el producto de los valores absolutos de los factores.
  • El signo es «+» si los signos de los factores son iguales, y «−» si son distintos.
Para recordar el signo del resultado, también se utiliza la regla de los signos:
Regla de los signos
  • (+) × (+)=(+) Más por más igual a más.
  • (+) × (−)=(−) Más por menos igual a menos.
  • (−) × (+)=(−) Menos por más igual a menos.
  • (−) × (−)=(+) Menos por menos igual a más.
Ejemplo. (+4) × (−6) = −24 , (+5) × (+3) = +15 , (−7) × (+8) = −56 , (−9) × (−2) = +18.
La multiplicación de números enteros tiene también propiedades similares a la de números naturales:
La multiplicación de números enteros cumple las siguientes propiedades:
  • Propiedad asociativa. Dados tres números enteros a, b y c, los productos (a × b) × c y a × (b × c) son iguales.
  • Propiedad conmutativa. Dados dos números enteros a y b, los productos a × b y b × a son iguales.
  • Elemento neutro. Todos los números enteros a quedan inalterados al multiplicarlos por 1: a × 1 = a.
Ejemplo.
  1. Propiedad asociativa:
  1. [ (−7) × (+4) ] × (+5) = (−28) × (+5) = −140
    (−7) × [ (+4) × (+5) ] = (−7) × (+20) = −140
  2. Propiedad conmutativa:
    (−6) × (+9) = −54
    (+9) × (−6) = −54

    VIDEO DE REFORZAMIENTO CON NUMEROS ENTEROS



lunes, 25 de agosto de 2014

UNIDAD: 1 APLIQUEMOS LOS NÚMEROS ENTEROS







Números enteros



Resta con negativos. La resta de dos números naturales no es un número natural cuando el sustraendo es mayor que el minuendo, sino que su valor es negativo: en la imagen, sólo pueden sustraerse 3 plátanos, por lo que se apunta un plátano «debido» o «negativo» (en rojo).
Los números enteros (designado por Descripción: \mathbb{Z}) son un conjunto de números que incluye a los números naturales distintos de cero (1, 2, 3, ...), los negativos de los números naturales (..., −3, −2, −1) y al 0. Los enteros negativos, como −1 o −3 (se leen «menos uno», «menos tres», etc.), son menores que todos los enteros positivos (1, 2, ...) y que el cero. Para resaltar la diferencia entre positivos y negativos, a veces también se escribe un signo «más» delante de los positivos: +1, +5, etc. Cuando no se le escribe signo al número se asume que es positivo. El conjunto de todos los números enteros se representa por la letra = {..., −3, −2, −1, 0, +1, +2, +3, ...}, que proviene del alemán Zahlen («números», pronunciado [ˈtsaːlən]).
Los números enteros no tienen parte decimal −783 y 154 son números enteros, mientras que 45,23 y −34/95 no. Al igual que los números naturales, los números enteros pueden sumar, restarse, multiplicarse y dividirse, de forma similar a los primeros. Sin embargo, en el caso de los enteros es necesario calcular también el signo del resultado.
Los números enteros extienden la utilidad de los números naturales para contar cosas. Pueden utilizarse para contabilizar pérdidas: si en un colegio entran 80 alumnos nuevos de primer curso un cierto año, pero hay 100 alumnos de último curso que pasaron a educación secundaria, en total habrá 100 − 80 = 20 alumnos menos; pero también puede decirse que dicho número ha aumentado en 80 − 100 = −20 alumnos.
También hay ciertas magnitudes, como la temperatura o la altura toman valores por debajo del cero. La altura del Everest es 8848 metros por encima del nivel del mar, y por el contrario, la orilla del Mar Muerto está 423 metros por debajo del nivel del mar; es decir, su altura se puede expresar como −423 m.